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Abstract
We consider the problem of designing rev-
enue maximizing online posted-price mecha-
nisms when the seller has limited supply. A seller
has k identical items for sale and is facing n po-
tential buyers (“agents”) that are arriving sequen-
tially. Each agent is interested in buying one
item. Each agent’s value for an item is an inde-
pendent sample from some fixed (but unknown)
distribution with support [0, 1]. The seller offers
a take-it-or-leave-it price to each arriving agent
(possibly different for different agents), and aims
to maximize his expected revenue.

We focus on mechanisms that do not use any
information about the distribution; such mecha-
nisms are called prior-independent. They are de-
sirable because knowing the distribution is unre-
alistic in many practical scenarios. We study how
the revenue of such mechanisms compares to the
revenue of the optimal offline mechanism that
knows the distribution (“offline benchmark”).

We present a prior-independent mechanism
whose revenue is at most O((k log n)2/3) less
than the offline benchmark, for every distribution
that is regular. This guarantee holds without any
assumptions if the benchmark is relaxed to fixed-
price mechanisms. Further, we prove a matching
lower bound.

On a technical level, we exploit the connection
to multi-armed bandits (MAB). While dynamic
pricing with unlimited supply can easily be seen
as an MAB problem, the intuition behind MAB
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approaches breaks when applied to the setting
with limited supply. Our high-level conceptual
contribution is that even the limited supply set-
ting can be fruitfully treated as a bandit problem.

1. Introduction
Consider an airline that is interested in selling k tickets for a
given flight. The seller is interested in maximizing her rev-
enue from selling these tickets, and is offering the tickets
on a website such as Expedia. Potential buyers (“agents”)
arrive one after another, each with the goal of purchasing a
ticket if the price is smaller than the agent’s valuation. The
seller expects n such agents to arrive. Whenever an agent
arrives the seller presents to him a take-it-or-leave-it price
(posted price), and the agent makes a purchasing decision
according to that price. The seller can update the price tak-
ing into account the observed history and the number of
remaining items and agents.

Posted price mechanisms are commonly used in practice,
and are appealing for several reasons. First, an agent only
needs to evaluate her offer rather than compute her private
value exactly. Human agents tend to find the former task
much easier than the latter. Second, agents do not reveal
their entire private information to the seller: rather, they
only reveal whether their private value is larger than the
posted price. Third, posted-price mechanisms are truthful
(in dominant strategies) and moreover also group strategy-
proof (a notion of collusion resistance when side payments
are not allowed). Further, prior-independent posted-price
mechanisms are particularly useful in practice as the seller
is not required to estimate the demand distribution in ad-
vance. Similar arguments can be found in prior work,
e.g. (Chawla et al., 2010).

We adopt a Bayesian view that the valuations of the buyers
are IID samples from a fixed distribution, called demand
distribution. A standard assumption in a Bayesian setting
is that the demand distribution is known to the seller, who
can design a specific mechanism tailored to this knowledge.
(For example, the Myerson optimal auction for one item
sets a reserve price that is a function of the distribution).
However, in some settings this assumption is very strong,
and should be avoided if possible. For example, when the
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seller enters a new market, she might not know the demand
distribution, and learning it through market research might
be costly. Likewise, when the market has experienced a sig-
nificant recent change, the new demand distribution might
not be easily derived from the old data.

We would like to design mechanisms that perform well for
any demand distribution, and yet do not rely on knowing
it. Such mechanisms are called prior-independent. Learn-
ing about the demand distribution is then an integral part
of the problem. The performance of such mechanisms is
compared to a benchmark that does depend on the specific
demand distribution, as in (Kleinberg & Leighton, 2003;
Hartline & Roughgarden, 2008; Besbes & Zeevi, 2009;
Dhangwatnotai et al., 2010) and many other papers.

2. Our model and contributions
We consider the following limited supply auction model,
which we term dynamic pricing with limited supply. A
seller has k items she can sell to a set of n agents (po-
tential buyers), aiming to maximize her expected revenue.
The agents arrive sequentially to the market and the seller
interacts with each agent before observing future agents.
We make the simplifying assumption that each agent inter-
acts with the seller only once, and the timing of the inter-
action cannot be influenced by the agent. (This assump-
tion is also made in other papers that consider our problem
for special supply amounts (Kleinberg & Leighton, 2003;
Babaioff et al., 2011; Besbes & Zeevi, 2009).) Each agent
i (1 ≤ i ≤ n) is interested in buying one item, and has a
private value vi for an item. The private values are indepen-
dently drawn from the same demand distribution F . The F
is unknown to the seller, but it is known that F has support
in [0, 1].1 Letting F (p) denote the c.d.f., S(p) , 1− F (p)
is called survival rate, which in our setting means is the the
probability of a sale at price p.

Whenever agent i arrives to the market the seller offers him
a price pi for an item. The agent buys the item if and
only if vi ≥ pi, and in case she buys the item she pays
pi (so the mechanism is incentive-compatible). The seller
never learns the exact value of vi, she only observes the
agent’s binary decision to buy the item or not. The seller
selects prices pi using an online algorithm, that we hence-
forth call pricing strategy. We are interested in designing
pricing strategies with high revenue compared to a natu-
ral benchmark, with minimal assumptions on the demand
distribution.

Our main benchmark is the maximal expected revenue of
an offline mechanism that is allowed to use the demand
distribution; henceforth, we will call it offline benchmark.

1Assuming that support(F ) ⊂ [0, 1] is w.l.o.g. (by normal-
izing) as long as the seller knows an upper bound on the support.

This is a very strong benchmark, as it has the following
advantages over our mechanism: it is allowed to use the
demand distribution, it is not constrained to posted prices
and is not constrained to run online. It is realized by a well-
known Myerson Auction (Myerson, 1981) (which does rely
on knowing the demand distribution).

Theorem 1. There exists a prior-independent pricing strat-
egy such that for any regular demand distribution its ex-
pected revenue is at least the offline benchmark minus
O((k log n)2/3).

Regularity is a mild and standard condition in the Mech-
anism Design literature.2 The pricing strategy in Theo-
rem 1 is deterministic and (trivially) runs in polynomial
time. The resulting mechanism is incentive-compatible
as it is a posted price mechanism. The specific bound
O((k log n)2/3) is most informative when k � log n, so
that the dependence on n is insignificant; the focus here is
to optimize the power of k.

The proof of Theorem 1 consists of two stages. The first
stage (immediate from (Yan, 2011)) reduces the problem
to the fixed-price benchmark: the expected revenue of the
best fixed-price strategy3 for a given distribution. We ob-
serve that for any regular demand distribution, the fixed-
price benchmark is close to the offline benchmark. The
second stage, which is our main technical contribution, is
to show that our pricing strategy achieves expected revenue
that is close to the fixed-price benchmark. Surprisingly, this
holds without any assumptions on the demand distribution.

Theorem 2. There exists a prior-independent pricing strat-
egy whose expected revenue is at least the fixed-price
benchmark minus O((k log n)2/3). This result holds for
every demand distribution. Moreover, this result is the best
possible up to a factor of O(log n).

If the demand distribution is regular and moreover the ratio
k
n is sufficiently small then the guarantee in Theorem 1 can
be improved to O(

√
k log n), with a distribution-specific

constant.

Theorem 3. There exists a detail-free pricing strategy
whose expected revenue, for any regular demand dis-
tribution F , is at least the offline benchmark minus
O(cF

√
k log n) whenever k

n ≤ sF , where cF and sF are
positive constants that depend only on F .

The bound in Theorem 3 is achieved using the pricing strat-
egy from Theorem 1 with a different parameter. Varying
this parameter, we obtain a family of strategies that im-
prove over the bound in Theorem 1 in the “nice” setting of

2The demand distribution F is called regular if F (·) is twice
differentiable and R(p) = pS(p) is concave: R′′(·) ≤ 0.

3A fixed-price strategy is a pricing strategy that offers the same
price to all agents, as long as it has items to sell.
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Theorem 3, and moreover have non-trivial additive guaran-
tees for arbitrary demand distributions. However, we can-
not match both theorems with the same parameter.

Note that the rate-
√
k dependence on k in Theorem 3 con-

tains a distribution-dependent constant cF (which can be
arbitrarily large, depending on F ), and thus is not directly
comparable to the rate-k2/3 dependence in Theorem 2. The
distinction (and a significant gap) between bounds with
and without distribution-dependent constants is not uncom-
mon in the literature on sequential decision problems, e.g.
in (Auer et al., 2002a; Kleinberg & Leighton, 2003; Klein-
berg et al., 2008).4

In fact, we show that the cF
√
k dependence on k is es-

sentially the best possible.5 We focus on the fixed-price
benchmark (which is a weaker benchmark, so it gives to a
stronger lower bound). Following the literature, we define
regret as the fixed-price benchmark minus the expected rev-
enue of our pricing strategy.

Theorem 4. For any γ < 1
2 , no detail-free pricing strategy

can achieve regret O(cF k
γ) for all demand distributions

F and arbitrarily large k, n, where the constant cF can
depend on F .

3. High-level discussion
Absent the supply constraint, our problem fits into the
multi-armed bandit (MAB) framework (Cesa-Bianchi &
Lugosi, 2006): in each round, an algorithm chooses among
a fixed set of alternatives (“arms”) and observes a pay-
off, and the objective is to maximize the total payoff over
a given time horizon.6 Our setting corresponds to (prior-
free) MAB with stochastic payoffs (Lai & Robbins, 1985):
in each round, the payoff is an independent sample from
some unknown distribution that depends on the chosen
“arm” (price). This connection is exploited in (Kleinberg
& Leighton, 2003; Blum et al., 2003) for the special case
of unlimited supply (k = n). The authors use a stan-
dard algorithm for MAB with stochastic payoffs, called
UCB1 (Auer et al., 2002a). Specifically, they focus on the
prices {iδ : i ∈ N}, for some parameter δ, and run UCB1

with these prices as “arms”. The analysis relies on the re-

4For a particularly pronounced example, for the K-armed ban-
dit problem with stochastic payoffs the best possible rates for re-
gret with and without a distribution dependent constant are re-
spectively O(cF logn) and O(

√
Kn) (Auer et al., 2002a;b; Au-

dibert & Bubeck, 2010).
5However, the lower bound in Theorem 4 does not match the

upper bound in Theorem 3 since the latter assumes regularity.
6To avoid a possible confusion, let us note that our supply

constraint is very different from the “budget constraint” in line
of work on budgeted MAB (see (Bubeck et al., 2009; Goel et al.,
2009) for details and further references). The latter consraint is
essentially the duration of the experimentation phase (n), rather
than the number of rounds with positive reward (k).

gret bound from (Auer et al., 2002a).

However, neither the analysis nor the intuition behind UCB1
and similar MAB algorithms is directly applicable for the
setting with limited supply. Informally, the goal of an MAB
algorithm would be to converge to a price p that maximizes
the expected per-round revenue R(p) , pS(p). This is, in
general, a wrong approach if the supply is limited: indeed,
selling at a price that maximizes R(·) may quickly exhaust
the inventory, in which case a higher price would be more
profitable.

Our high-level conceptual contribution is showing that even
the limited supply setting can be fruitfully treated as a ban-
dit problem. The MAB perspective here is that we focus on
the trade-off between exploration (acquiring new informa-
tion) and exploitation (taking advantage of the information
available so far). In particular, we recover an essential fea-
ture of UCB1 that it does not separate exploration and ex-
ploitation, and instead explores arms (prices) according to
a schedule that unceasingly adapts to the observed payoffs.
This feature results, both for UCB1 and for our algorithm, in
a much more efficient exploration of suboptimal arms: very
suboptimal arms are chosen very rarely even while they are
being “explored”.

4. Our approach
We use an “index-based” algorithm where each arm is de-
terministically assigned a numerical score (“index”) based
on the past history, and in each round an arm with a max-
imal index is chosen; the index of an arm depends on the
past history of this arm (and not on other arms). One key
idea is that we define the index of an arm according to the
estimated expected total payoff from this arm given the
known constraints, rather than according to its estimated
expected payoff in a single round. This idea leads to an al-
gorithm that is simple and (we believe) very natural. How-
ever, while the algorithm is simple its analysis is not: some
new ideas are needed, as the elegant tricks from prior work
do not apply.

We apply the above idea to UCB1. The index in UCB1

is, essentially, the best available Upper Confidence Bound
(UCB) on the expected single-round payoff from a given
arm. Accordingly, we define a new index, so that the index
of a given price corresponds to a UCB on the expected to-
tal payoff from this price (i.e., from a fixed-price strategy
with this price), given the number of agents and the inven-
tory size. Such index takes into account both the average
payoff from this arm (“exploitation”) and the number of
samples for this arm (“exploration”), as well as the supply
constraint. In particular we recover the appealing property
of UCB1 that it does not separate “exploration” and “ex-
ploitation”, and instead explores arms (prices) according to
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a schedule that unceasingly adapts to the observed payoffs.

There are several steps to make this approach more precise.
First, while it is tempting to use the current values for the
number of agents and the inventory size to define the index,
we adopt a non-obvious (but more elegant) design choice to
use the original values, i.e. the n and the k. Second, since
the exact expected total revenue for a given price p is hard
to quantify, we will instead use what we prove is a good
approximation thereof:

ν(p) = p min(k, nS(p)), (1)

where S(p) is the survival rate. That is, our index will be a
UCB on ν(p). More specifically, we define

It(p) , p ·min(k, nSUB
t (p)), (2)

where SUB
t (p) is a UCB on S(p). Third, in specifying

SUB
t (p) we will use a non-standard estimator from (Klein-

berg et al., 2008) to better handle prices with very low sur-
vival rate (see the full version for the details).

The main technical hurdle in the analysis is to “charge”
each suboptimal price for each time that it is chosen, in a
way that the total regret is bounded by the sum of these
charges and this sum can be usefully bounded from above.

An additional difficulty comes from the probabilistic na-
ture of the analysis. To this end, we cleanly decouple
the analysis into “probabilistic” and “deterministic” parts.
While we use a well-known trick – we define some high-
probability events and assume that these events hold deter-
ministically in the rest of the analysis – identifying an ap-
propriate collection of events is non-trivial. Proving that
these events indeed hold with high probability relies on
some non-standard tail bounds from prior work.

5. Our pricing strategy: CappedUCB
The pricing strategy is initialized with a set P of “active
prices”. In each round t, some price p ∈ P is chosen.
Namely, for each price p ∈ P we define a numerical score,
called index, and we pick a price with the highest index,
breaking ties arbitrarily. Once k items are sold, CappedUCB
sets the price to∞ and never sells any additional item.

Recall that the total expected revenue from the fixed-price
strategy with price p is approximated by (1). In each round
t, we define the index It(p) as a UCB on ν(p) as in (2).

For each p ∈ P and time t, let Nt(p) be the number of
rounds before t in which price p has been chosen, and let
kt(p) be the number of items sold in these rounds. Then
Ŝt(p) , kt(p)/Nt(p) is the current average survival rate.
(Define Ŝt(p) to be equal to 1 when Nt(p) = 0.)

Mechanism 1 CappedUCB for n agents and k items
Parameter: δ ∈ (0, 1)

1: P ← {δ(1 + δ)i ∈ [0, 1] : i ∈ N} {“active prices”}
2: While there is at least one item left,

in each round t,
pick any price p ∈ argmaxp∈P It(p),

where It(p) is the “index” given by (5).
3: For all remaining agents, set price p =∞.

A confidence radius is some number rt(p) such that

|S(p)− Ŝt(p)| ≤ rt(p) (∀ p ∈ P, t ≤ n). (3)

holds w.h.p., namely with probability at least 1− n−2.

We need to define a suitable confidence radius rt(p), which
we want to be as small as possible subject to (3). Note
that rt(p) must be defined in terms of quantities that are
observable at time t, such as Nt(p) and Ŝt(p). A standard
confidence radius used in the literature is (essentially)

rt(p) =
√

Θ(logn)
Nt(p)+1 .

Instead, we use a more elaborate confidence radius
from (Kleinberg et al., 2008):

rt(p) ,
α

Nt(p) + 1
+

√
α Ŝt(p)

Nt(p) + 1
, (4)

for some α = Θ(log n).

The reason for using the confidence radius in (4) is that
performs as well as the standard one in the worst case:

rt(p) ≤
√

O(logn)
Nt(p)+1 , and much better for very small survival

rates: rt(p) ≤ O(logn)
Nt(p)+1 . (See (7) for the precise statement.)

Now we are ready to define the index:

It(p) , p ·min(k, n (Ŝt(p) + rt(p))). (5)

Finally, the active prices are given by

P = {δ(1 + δ)i ∈ [0, 1] : i ∈ N}, (6)

where δ ∈ (0, 1) is a parameter to be adjusted. See Mech-
anism 1 for the pseudocode.

All proofs can be found in the full version. For an interested
reader, we include the proof of the main technical result
(Theorem 2) in the appendix.

6. Related work
Dynamic pricing problems and, more generally, revenue
management problems, have a rich literature in Operations
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Research. A proper survey of this literature is beyond our
scope; see (Besbes & Zeevi, 2009) for an overview. The
main focus is on parameterized demand distributions, with
priors on the parameters.

The study of dynamic pricing with unknown demand dis-
tribution has been initiated in (Blum et al., 2003; Klein-
berg & Leighton, 2003). Several special cases of our set-
ting have been studied in (Kleinberg & Leighton, 2003;
Babaioff et al., 2011; Besbes & Zeevi, 2009), detailed be-
low. First, (Kleinberg & Leighton, 2003) consider the un-
limited supply case (building on the earlier work (Blum
et al., 2003)). Among other results, they study IID val-
uations, i.e. our setting with k = n. They provide an
O(n2/3 log n) upper bound on regret, and prove a match-
ing lower bound. On the other extreme, (Babaioff et al.,
2011) consider the case that the seller has only one item
to sell (k = 1). They provide a super-constant multiplica-
tive lower bound for unrestricted demand distribution (with
respect to the online optimal mechanism), and a constant-
factor approximation for monotone hazard rate distribu-
tions. (Besbes & Zeevi, 2009) consider a continuous-time
version which (when specialized to discrete time) is es-
sentially equivalent to our setting with k = Ω(n). They
prove a number of upper bounds on regret with respect to
the fixed-price benchmark, with guarantees that are inferior
to ours. The key distinction is that their pricing strategies
separate exploration and exploitation.

The study of online mechanisms was initiated by (Lavi &
Nisan, 2000), who unlike us consider the case that each
agent is interested in multiple items, and provide a log-
arithmic multiplicative approximation. Below we survey
only the most relevant papers in this line of work, in ad-
dition to the special cases of our setting that we have al-
ready discussed. Several papers (Bar-Yossef et al., 2002;
Blum et al., 2003; Kleinberg & Leighton, 2003; Blum &
Hartline, 2005) consider online mechanisms with unlim-
ited supply and adversarial valuations (as opposed to lim-
ited supply and IID valuations in our setting). (Hajiaghayi
et al., 2004; Devanur & Hartline, 2009) study online mech-
anisms for limited supply and IID valuations (same as us),
but their mechanisms are not posted-price.

MAB has a rich literature in Statistics, Operations Re-
search, Computer Science and Economics; a reader can
refer to (Cesa-Bianchi & Lugosi, 2006; Bergemann &
Välimäki, 2006) for background. Most relevant to our spe-
cific setting is the work on (prior-free) MAB with stochas-
tic payoffs, e.g. (Lai & Robbins, 1985; Auer et al., 2002a),
and MAB with Lipschitz-continuous stochastic payoffs,
e.g. (Agrawal, 1995; Kleinberg, 2004; Auer et al., 2007;
Kleinberg et al., 2008; Bubeck et al., 2011). The posted-
price mechanisms in (Blum et al., 2003; Kleinberg &
Leighton, 2003; Blum & Hartline, 2005) mentioned above

are based on a well-known MAB algorithm (Auer et al.,
2002b) for adversarial payoffs. The connection between
reinforcement learning and mechanism design has been ex-
plored in a number of other papers, including (Nazerzadeh
et al., 2008; Devanur & Kakade, 2009; Babaioff et al.,
2009; 2010).

7. Conclusions and open questions
We consider dynamic pricing with limited supply and
achieve near-optimal performance using an index-based
bandit-style algorithm. A key idea in designing this algo-
rithm is that we define the index of an arm (price) according
to the estimated expected total payoff from this arm given
the known constraints.

It is worth noting that a good index-based algorithm did
not have to exist in our setting. Indeed, many bandit algo-
rithms in the literature are not index-based, e.g. EXP3 (Auer
et al., 2002b) and “zooming algorithm” (Kleinberg et al.,
2008) and their respective variants. The fact that Gittins
algorithm (Gittins, 1979) and UCB1 (Auer et al., 2002a)
achieve (near-)optimal performance with index-based algo-
rithms was widely seen as an impressive contribution.

While in this paper we apply the above key idea to a spe-
cific index-based algorithm (UCB1), it can be seen as an
(informal) general reduction for index-based algorithms for
dynamic pricing, from unlimited supply to limited supply.
This reduction may help with more general dynamic pric-
ing settings (more on that below), and moreover it can be
extended to other bandit-style settings where the “best arm”
is not an arm with the best expected per-round payoff. In
particular, an ongoing project (Abraham et al., 2012) uses
this reduction in the context of adaptive crowd-selection in
crowdsourcing.

It is an interesting open question whether a reduction such
as above can be made more formal, and which algorithms
and which settings it can be applied to. An ambitions con-
jecture for our setting is that there is a simple black-box
reduction from unlimited supply to limited supply that ap-
plies to arbitrary “reasonable” algorithms. In the full gen-
erality this conjecture appears problematic; e.g. some rea-
sonable bandit algorithms such as EXP3 are hard-coded to
spend a prohibitively large amount of time on exploration.

This paper gives rise to a number of more concrete open
questions. First, it is desirable to extend Theorem 1 to pos-
sibly irregular distributions, i.e. obtain non-trivial regret
bounds with respect to the offline benchmark. Second, one
wonders whether the optimal O(cF

√
k) regret rate from

Theorem 3 can be extended to all regular demand distribu-
tions. Third, it is open whether our lower bounds can be
strengthened to regular demand distributions.
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Further, it is desirable to extend dynamic pricing with lim-
ited supply beyond IID valuations. A recent result in this
direction is (Besbes & Zeevi, 2011), where the demand dis-
tribution can change exactly once, at some point in time
that is unknown to the mechanism. Natural specific tar-
gets for further work are slowly changing valuations and
adversarial valuations. One promising approach for slowly
changing valuations is to apply the reduction from this pa-
per to index-based algorithms for the corresponding bandit
setting (Slivkins & Upfal, 2008; Slivkins, 2011).
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Bubeck, Sébastien, Munos, Rémi, and Stoltz, Gilles. Pure Explo-
ration in Multi-Armed Bandit Problems. In 20th Intl. Conf. on
Algorithmic Learning Theory (ALT), 2009.
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Appendix A: Proof of Theorem 2

We prove that CappedUCB achieves regret O(k log n)2/3,
given parameter δ = k−1/3 (log n)2/3.

Since this regret bound is trivial for k < log2 n, we will
assume that k ≥ log2 n from now on.

Note that CappedUCB “exits” (sets the price to ∞) after it
sells k items. For a thought experiment, consider a ver-
sion of this pricing strategy that does not “exit” and con-
tinues running as if it has unlimited supply of items; let us
call this version CappedUCB′. Then the realized revenue
of CappedUCB is exactly equal to the realized revenue ob-
tained by CappedUCB′ from selling the first k items. Thus
from here on we focus on analyzing the latter.

We will use the following notation. Let Xt be the indicator
variable of the random event that CappedUCB′ makes a sale
in round t. Note that Xt is a 0-1 random variable with
expectation S(pt), where pt depends onX1, . . . , Xt−1. Let
X ,

∑n
t=1 Xt be the total number of sales if the inventory

were unlimited. Note that E[X] = S ,
∑n
t=1 S(pt).

Going back to our original algorithm, let R̂ev denote the
realized revenue of CappedUCB (revenue that is realized in
a given execution). Then R̂ev =

∑N
t=1 ptXt, where N is

the largest integer such that N ≤ n and
∑N
t=1Xt ≤ k.

High-probability events. We tame the randomness in-
herent in the sales Xt by setting up three high-probability
events, as described below. In the rest of the analysis, we
will argue deterministically under the assumption that these
three events hold. It suffices because the expected loss in

revenue from the low-probability failure events will be neg-
ligible. The three events are summarized as follows:

Claim 5. With probability at least 1− n−2 holds, for each
round t and each price p ∈ P:

|S(p)− Ŝt(p)| ≤ rt(p)

≤ 3

(
α

Nt(p)+1 +
√

αSt(p)
Nt(p)+1

)
, (7)

|X − S| < O(
√
S log n+ log n), (8)

|
∑n
t=1 pt(Xt − S(pt))| < O(

√
S log n+ log n). (9)

In the first event, the left inequality asserts that rt(p) is a
confidence radius, and the right inequality gives the per-
formance guarantee for it. The other two events focus on
CappedUCB′, and bound the deviation of the total number
of sales (X) and the realized revenue (

∑n
t=1 ptXt) from

their respective expectations; importantly, these bound are
in terms of

√
S rather than

√
n.

The proof of Claim 5 can be found in the full version. In
the rest of the analysis we will assume that the three events
in Claim 5 hold deterministically.

Single-round analysis. Let us analyze what happens in
a particular round t of the pricing strategy. Let pt be the
price chosen in round t. Let p∗act ∈ argmaxp∈P ν(p) be the
best active price according to ν(·), and let ν∗act , ν(p∗act).
Let ∆(p) , max(0, 1

n ν
∗
act − pS(p)) be our notion of

“badness” of price p, compared to the optimal approxi-
mate revenue ν∗. We will use this notation throughout
the analysis, and eventually we will bound regret in terms
of
∑
p∈P ∆(p)N(p), where N(p) is the total number of

times price p is chosen.

Claim 6. For each price p ∈ P it holds that

N(p) ∆(p) ≤ O(log n)
(

1 + k
n

1
∆(p)

)
. (10)

Proof. By definition (3) of the confidence radius, for each
price p ∈ P and each round t we have

ν(p) ≤ It(p) ≤ p ·min (k, n (S(p) + 2 rt(p))) . (11)

Let us use this to connect each choice pt with ν∗act:{
It(pt) ≥ It(p∗act) ≥ ν(p∗act) , ν∗act

It(pt) ≤ pt ·min (k, n (S(pt) + 2 rt(pt))) .

Combining these two inequalities, we obtain the key in-
equality:

1
n ν
∗
act ≤ pt ·min

(
k
n , S(pt) + 2 rt(pt)

)
. (12)
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There are several consequences for pt and ∆(pt):
pt ≥ 1

k ν
∗
act

∆(pt) ≤ 2 pt rt(pt)
∆(pt) > 0 ⇒ S(pt) <

k
n

. (13)

The first two lines in (13) follow immediately from (12).
To obtain the third line, note that ∆(pt) > 0 implies pt k ≥
ν∗act > npt S(pt), which in turn implies S(pt) <

k
n .

Note that we have not yet used the definition (4) of the con-
fidence radius. For each price p = pt, let t be the last round
in which this price has been selected by the pricing strat-
egy. Note that N(p) (the total number of times price p is
chosen) is equal to Nt(p) + 1. Then using the second line
in (13) to bound ∆(p), Eq. (7) to bound the confidence ra-
dius rt(p), and the third line in (13) to bound the survival
rate, we obtain:

∆(p) ≤ O(p)×max
(

logn
N(p) ,

√
k
n

logn
N(p)

)
.

Rearranging the terms, we can bound N(p) in terms of
∆(p) and obtain (10).

Analyzing the total revenue. A key step is the follow-
ing claim that allows us to consider

∑n
t=1 pt S(pt) instead

of the realized revenue R̂ev, effectively ignoring the capac-
ity constraint. This is where we use the high-probability
events (8) and (9). For brevity, let us denote β(S) =
O(
√
S log n+ log n).

Claim 7. R̂ev ≥ min(ν∗act,
∑n
t=1 pt S(pt))− β(k).

Proof. Recall that pt ≥ 1
kν
∗
act by (13). It follows that

R̂ev ≥ ν∗act whenever
∑n
t=1Xt > k. Therefore, if R̂ev <

ν∗act then
∑n
t=1Xt ≤ k and so R̂ev =

∑n
t=1 ptXt. Thus,

by (9) it holds that

R̂ev ≥ min (ν∗act,
∑n
t=1 ptXt)

≥ min (ν∗act,
∑n
t=1 pt S(pt)− β(S)) .

So the claim holds when S ≤ k. On the other hand, if
S > k then by (8) it holds that

X ≥ S − β(S) ≥ k − β(k)

R̂ev ≥ min(k,X) ( 1
k ν
∗
act) ≥ ν∗act − β(k).

In light of Claim 7, we can now focus on
∑n
t=1 pt S(pt).∑n

t=1 pt S(pt) ≥
∑n
t=1

1
n ν
∗
act −∆(pt)

= ν∗act −
∑n
t=1 ∆(pt)

= ν∗act −
∑
p∈P ∆(p)N(p). (14)

Fix a parameter ε > 0 to be specified later, and denote{
Psel , {p ∈ P : N(p) ≥ 1}
Pε , {p ∈ Psel : ∆(p) ≥ ε}

to be, respectively, be the set of prices that have been se-
lected at least once and the set of prices of badness at
least ε that have been selected at least once. Plugging (10)
into (14):∑

p∈P ∆(p)N(p)

≤
∑
p∈Psel\Pε ∆(p)N(p) +

∑
p∈Pε ∆(p)N(p)

≤ εn+O(log n)
∑
p∈Pε

(
1 + k

n
1

∆(p)

)
≤ εn+O(log n)

(
|Pε|+ k

n

∑
p∈Pε

1
∆(p)

)
. (15)

Combining (14), (15) and Claim 7 we obtain that

ν∗act − E[R̂ev] ≤ εn+ β(k)+

+O(log n)
(
|Pε|+ k

n

∑
p∈Pε

1
∆(p)

)
.

The above fact summarizes our findings so far. Interest-
ingly, it holds for any set of active prices.

The following claim, however, takes advantage of the fact
that the active prices are given by (6).

Claim 8. ν∗act ≥ ν∗ − δk, where ν∗ , maxp ν(p).

Proof. Let p∗ ∈ argmaxp ν(p) denote the best fixed price
with respect to ν(·), ties broken arbitrarily. If p∗ ≤ δ then
ν∗ ≤ δk. Else, letting p0 = max{p ∈ P : p ≤ p∗} we
have p0/p ≥ 1

1+δ ≥ 1− δ, and so

ν∗act ≥ ν(p0) ≥ p0
p∗ ν(p∗) ≥ ν∗(1− δ) ≥ ν∗ − δk.

It follows that for any ε > 0 and δ ∈ (0, 1) we have:

Regret ≤ O(log n)
(
|Pε|+ k

n

∑
p∈Pε

1
∆(p)

)
(16)

+ εn+ δk + β(k). (17)

The rest is a standard computation. Plugging in ∆(p) ≥ ε
for each p ∈ Pε in (16), we obtain:

Regret ≤ O(|Pε| log n)
(
1 + 1

ε
k
n

)
+ εn+ δk + β(k).

Note that |P| ≤ 1
δ log n. To simplify the computation, we

will assume that δ ≥ 1
n and ε = δ kn . Then

Regret ≤ O
(
δk + 1

δ2 (log n)2 +
√
k log n

)
. (18)

Finally, it remains to pick δ to minimize the right-hand side
of (18). Let us simply take δ such that the first two sum-
mands are equal: δ = k−1/3 (log n)2/3. Then the two sum-
mands are equal to O(k log n)2/3.


